작성일
2024.03.29
수정일
2024.03.29
작성자
김선웅
조회수
6

[KCI] 지상 영상레이더 위상간섭기법 기반 댐 사면 안정성 평가

지상 영상레이더 위상간섭기법 기반 댐 사면 안정성 평가

Evaluation of Slope Stability on Dam Using Ground-based Interferometric Radar

 

 

Dams are man-made structures built to manage water resources efficiently and prepare for natural disasters such as droughts and floods. It requires careful and continuous inspection to prevent its failure. Research reported to assess dam stability

using terrestrial surveys such as ground penetration radar, electrical resistivity tomography, and remote sensing methods such as space-borne synthetic aperture radar (SAR). Differential interferometric SAR (DInSAR) calculates the phase difference

between two consecutive images acquired at separate times and has been widely utilized to detect surface displacement from volcanoes, earthquakes, and ground subsidence. However, space-borne InSAR applications have limitations in acquiring

flexible data for specific dates or regions due to the revisit cycle of the orbital configuration and the fixed acquisition geometry. In this feasibility study, the slope stability of the dam was evaluated using the Gamma Portable Radar InterferometerII

(GPRI-II) which has the advantage of overcoming the limitation of satellite observations. The GPRI-II is a ground-based real aperture radar that operates in the Ku-band wavelength (~1.7 cm), providing convenient portability and installation for

high spatial and temporal resolution. A total of 20 GPRI-II datasets were acquired for 22 minutes on June 7, 2023, at a dam in Jeollanam-do for the DInSAR application. 

The displacement calculation revealed an average displacement of approximately -0.36 mm at a randomly selected point, which is negligible. The average displacement of -0.17 mm was observed for the entire dam. Our results suggest that ground-based radar interferometry could assess the dam slope stability.

 

Keywords: Ground-based radar; Real aperture radar; Radar interferometry; Dam;

Displacement

첨부파일